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Abstract— Sets of multi-agent teams often need to maximize a
global utility rating the performance of the entire system where
a team cannot fully observe other teams’ agents. Such limited
observability hinders team-members trying to pursue their team
utilities to take actions that also help maximize the global utility.
In this article, we show how team utilities can be used in partially
observable systems. Furthermore, we show how team sizes can
be manipulated to provide the best compromise between having
easy to learn team utilities and having them aligned with the
global utility. The results show that optimally sized teams in a
partially observable environments outperform one team in a fully
observable environment, by up to 30%.

I. I NTRODUCTION

Team formation is important in many multi-agent systems,
since it allows team members to focus on a team-goal, which
is simpler than a global-goal over an entire system[4], [9].
In addition team formation allows sharing of information [6],
[12]. This paper focuses on systems using teams of learning
agents with the following properties:

• an agent belongs to one and only one team;
• agents receive the utility of the team; and
• team members share observations about other teams.

In this system each agent attempts to maximize a utility
provided by the team using a learning algorithm such as
reinforcement learning or evolution over neural networks. For
such a system to work properly, team utilities have to have
the following properties:

• team utilities should be easy for the agents to optimize;
• agents optimizing their team utilities should result in

agents optimizing the global utility; and
• teams must compute utilities when they cannot fully

observe each other.

In this paper we address the first property by using the theory
of collectives [20], [15] to create learnable team utilities. We
address the second and third property by modifying the theory
of collectives for partially observable environments to create
team utilities that are “aligned” with the global utility. We
will show that these properties are traded off as the team size
grows. The team utility for a small team is relatively easy to
learn. However a large team is able to observe the actions of
other teams better, allowing its team utility to be more aligned

with the global utility. We will show that team sizes can be
adjusted to make the optimal tradeoff.

The concept of teams can be found most often in human
activities. For example, corporations are often setup with team
structures where employees are members of a team or group
(e.g., through sharing a bonus for successful completition of
a project) and each team member benefits when the team
successfully contributes to the goals of the corporation. Spon-
taneous team formation in agents has also been studied at a
theoretical level. Axtell [2] has shown that for small sizes
of teams there can be a stable Nash equilibrium, but that
the stability breaks down when teams go beyond a certain
size. Similarly we will show that even when team formation
is created in a top-down manner that it may be difficult for
agents to learn to maximize team utilities for larger teams.

There has been extensive research on rule-based agent
team formations. Tambe has shown that coordination rules
can be used successfully in many fields including military
engagement [14]. A common mechanism to coordinate team
agents is for teams to have “joint intentions” [4] where team
agents need to work for a common goal. Groz coins the term
“SharedPlan” [9] to refer to this concept. Also related to this
paper is work done in the field of sensor fusion. Fox has shown
that when the amount of information that a robot receives
is restricted teams of robots with different sensors, can work
together to solve the robot localization problem [6]. In addition
it has been shown that teams can share sensor information
to estimate unobservable parts of the world in robotic soccer
domains [12].

The first step in creating a collection of teams that can
effectively maximize the global utility is to ensure that teams
can work together. If the teams are not designed to work
well with each other, they may not learn their task properly,
may interfere with each other’s ability to contribute to the
global utility, or simply perform useless repetitive work. Hand
tailoring the team utility functions may offer an alternative,
but such systems: (i) have to be laboriously modeled; (ii)
provide “brittle” global performance; (iii) are not “adaptive” to
changing environments; and (iv) generally do not scale well.

To sidestep these problems, yet address the design require-
ments listed above (i.e., “alignedness” and “learnability”) one



can use the framework of collectives [17], [20]. Given this
framework, the crucial design problem becomes: Assuming
the individual agents are able to maximize the team utility
function (e.g., through reinforcement learning [13] or evolution
of neural networks), what set of team utilities, when pursued
by those agents, result in high global utility?

There are two quantifiable properties (discussed in detail
in Section II) that help answer this question. First, the utility
functions for the team need to be “aligned” with the global
utility, in that an action taken by an agent that improves its
team utility also improves the global utility. Second, the utility
functions need to be “learnable” in that an agent has to be
able to discern the effect of its actions on its team utility and
select actions that optimize that utility. As we will highlight
below, the theory of collectives provides utilities for agents
that maximize the second property while satisfying the first
one.

The collectives framework has been successfully applied
to multiple domains including packet routing over a data
network [21], the congestion game known as Arthur’s El Farol
Bar problem [22], and the coordination of multi-rovers in
learning sequences of actions [16]. In particular, in the routing
domain, the collectives approach achieved performance im-
provements of a factor of three over the conventional Shortest
Path Algorithm (SPA) routing algorithms currently running
on the internet [19], and avoided the Braess’ routing paradox
which plagues the SPA-based systems [17].

In the work described above, agents can fully observe
each other and did not form teams. In this paper we will
show that teams can be effective in environments with partial
observability, if the proper team utilities are used. In Section II,
we provide some background on the theory of collectives
that is needed for this article. In Section III, we describe the
problem domain and present the collective-based solution to
this problem. In Section IV, we present the simulation results
for domains where there is no costs associated with team
members sharing informations and domains where there is a
cost of sharing information.

II. BACKGROUND: COLLECTIVE INTELLIGENCE

In this work, we focus on a system of multi-agent teams
that aim to maximize a global utility function,G(z), which
is a function of the joint move of all agents in the system,z.
In previous work [20] that uses the theory of collectives, each
agent does not maximizeG(z) directly, but instead maximizes
an agent specific utility function,g(z). Instead in this work
each agent in teamτ will try to maximize a team utility
function gτ (z). Team utilities have the advantage over agent
utilities in partially observable environments in that a team
utility may be able to incorporate observations from all the
team members. This increase in observational capability will
allow team utilities that are more “aligned” with the global
utility (Figure 1). In addition team utilities allow for domains
where agents are not even capable of computing their own
utility, but can still blindly maximize a broadcast team utility.
The goal of this section is to create team utility functions that

will cause the multi-agent system to produce high values of
G(z).
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Fig. 1. Team vs. Agent Utilities. Left figure shows agents following agent
utilities that are not fully aligned with the global utility due to partial
observability. Right figure shows teams collecting observations from multiple
agents allowing them to make team utilities that are more aligned.

Note that in many systems, an individual teamτ will only
influence some of the components ofz. We will use the
notation zτ to refer to the parts ofz that are dependent on
the actions of teamτ . The vectorzτ is the same size asz and
is equal toz except that all the components that do not depend
on teamτ are set to zero. By subtractingzτ from z we produce
the vectorz−τ = z − zτ , a vector that is determined by the
actions of all the agents other thanτ . Note that this subscripted
vector notation is not the same as a traditional index to a vector
sincez, z−τ andzτ all have the same number of components.

There are two properties that are crucial to producing
systems in which agents acting to optimize their team utilities
will also optimize the provided global utility. The first of these
concerns “aligning” the team utilities with the global utility.
Formally, a system isfactored when for each teamτ :

gτ (z) ≥ gτ (z′) ⇔ G(z) ≥ G(z′)
∀z, z′ s.t. z − zτ = z′ − z′τ .

Intuitively, for all pairs of statesz andz′ that differ only for
team τ , a change inτ ’s state that increases its team utility
cannot decrease the global utility. As a trivial example, any
system in which all the team utility functions equalG is
factored [5].

The second property, calledlearnability , measures the
dependence of a utility on the actions of agents in a particular
team as opposed to all the actions of all the other agents.
Intuitively, higher learnability means it is easier for a team
τ to achieve a large values of its team utility. Note in the
factored example of usingG as team utility above, the utility
of each team depended on the actions of all the agents in all
teams. Such systems often suffer from low signal-to-noise, a
problem that get progressively worse as the size of the system
grows.



A. Difference Utility

Considerdifferenceutility functions, which are of the form:

DUτ ≡ G(z)−G(z−τ + cτ ) (1)

wherez−τ contains all the variable not affected by agents in
teamτ . All the components ofz that are affected by agents in
teamτ are replaced with the fixed constantcτ . Such difference
utilities are factored no matter what the choice ofcτ , because
the second term does not depend on the actions of agents
in team τ [20]. Furthermore, they usually have far better
learnability than does the global utility, because of the second
term of DU, which removes a lot of the effect of other agents
(i.e., noise) fromτ ’s evaluation function. In many situations
it is possible to use acτ that is equivalent to taking team
τ out of the system. Intuitively this causes the second term
of the difference utility to evaluate the global utility of the
system without teamτ and therefore DU evaluates the teams
contribution to the global utility.

B. Partial Observability

In general to compute a difference utility, a team may have
to be able to fully observer all the other teams. For some
specific classes of utility such as the DU, this observational
demand may be relaxed, since many of the elements of the
worldline cancel out and may be ignored. However in many
real world problems, agents from one team cannot observe
agents from other teams adequately to compute even the less
demanding utilities. In these cases we must approximate the
utility under the constraints of partial observability.

We denote the component ofz that is observable byτ
using the vectorzoτ and the part ofz that is not observable
by τ using the vectorzhτ . The vectorzoτ is the same as
z except that all the elements that are not observable byτ
are set to zero. We callzoτ the observable componentsof
the worldline. The vectorz is the sum of these two vectors:
z = zoτ + zhτ . It is assumed that teamτ can always observe
all components ofzτ . If the DU depends on any component
of zh then we cannot compute it directly. Instead there are
several approximations to the DU that vary in their balance
between learnability and factoredness. In this paper we discuss
four approximations1:

BTUτ (z) = G(z)−G(zoτ − zτ ) (2)

TTUτ (z) = G(zoτ )−G(zoτ − zτ ) (3)

BEUτ (z) = G(z)−G(zoτ + E[zhτ |zoτ ]− zτ ) (4)

EEUτ (z) = G(zoτ − E[zhτ |zoτ ])−
G(zoτ + E[zhτ |zoτ ]− zτ ) , (5)

where E[·] is the expectation operator. Note thatBTU , as
well as BEU , assume that the true global utility can be
broadcast despite having only partial observability. In many

1The first two letters of the utility represent how the two terms of the
difference utility get their information. “B” stands for “broadcast”, “T’ ’ stands
for “truncated” since the hidden values are just thrown away, and “E” stands
for “estimated.”

applications, this is a reasonable assumption since the global
utility can often be computed once and broadcast throughout
the environment [7]. More complex forms of broadcasting
are often used for distributed multi-agent systems [3], but in
this paper we will assume a very simple global broadcast of
a single number. In many domains it is also reasonable to
assume global utility can even be obtained directly from the
environment without broadcasting [10].

C. Observability and Team Size

This paper assumes that the observational capability of a
team goes up with the size of the team. This property of team
size can happen for a number of different reasons including,
larger teams having more resources and greater coverage of
different areas. This paper will use a simple model of how the
observation capability of a team relates to its size, based on all
team observations coming independently from team members.
Let Si be the set of components inz that theith agent in team
τ can observe. We define the agent observation levelBi as the
ratio of the size ofSi to the size ofz:

Bi =
|Si|
|z|

. (6)

Note that this value is always in the range[0.0, 1.0]. We as-
sume that all the agents in a team can share their observations,
therefore the set of wordline components that are observable
by a teamτ , Sτ is the union of the sets of all of its members:

Sτ =
⋃
i∈τ

Si . (7)

The percent of agents in other teams that can be observed by
a teamτ of sizem is therefore:

Bτ = 1− (1−Bi)m , (8)

assuming that the set of agents in other teams that each
team member can observe sampled independently for all team
members. Any costs associated with team members sharing
information can be included in the global utility. In Section
IV we will examine issues in domains where there is a high
cost of sharing observations within a team.

III. T HE BAR PROBLEM

Arthur’s bar problem [1] can be viewed as a problem in
designing collectives. Loosely speaking, in this problem at
each time step each agent decides whether to attend a bar
by predicting, based on its previous experience, whether the
bar will be too crowded to be “rewarding” at that time, as
quantified by a utility functionG. The selfish nature of the
agents frustrates the global goal of maximizingG. This is
because if most agents think the attendance will be low (and
therefore choose to attend), the attendance will actually be
high, and vice-versa.

Here, we focus on the following more general variant of the
bar problem investigated in [20]: There areN agents broken
up into disjoint teams, where each agent goes to the bar one
night each week. The action of the agent is to choose the one



night (out of seven) it will go to the bar that week. At the end
of the week, each agent receives the team utility for its team.
The task of the agent is to choose a night that maximizes its
team utility.

More formally, the global utility in any particular week is:

G(z) ≡
7∑

k=1

xk(z) exp(−xk(z)/c) , (9)

wherexk(z) is the total attendance on nightk andc is a real-
valued parameter. In this problem when either too few or too
many agents attend some night in some week the global utility
G is low.

Since we wish to concentrate on the effects of the utilities
rather than on the RL algorithms that use them, we use a
(very) simple RL algorithm. In our algorithm each agentτ
has a 7-dimensional vector giving its estimates of the team
utility it would receive for choosing each possible night. The
decisions are made using the vector, with anε-greedy learner
with ε set to 0.05. All of the vectors are initially set to zero
and there is a learning rate decay is 0.99. The RL algorithm
can be viewed as a Q-learner withγ = 0. Note that many
other utility maximization algorithms could be used instead,
including evolution over neural networks.

This paper uses a version of this problem where teams
cannot fully observe the actions of agents in other teams.
The number of actions that can be observed is dependent on
the team size, and is based on collecting the observations of
all the members in a team. Let the observation levelB, be
the fraction of agents from other teams that can be observed
by a single agent. The range ofB is [0.0, 1.0]. A team is
able to aggregate all the observations collected by its team
members. This aggregation will make the observation level of
the teamBτ significantly higher than the observation level
of any particular agent, and will rise with the number of the
agents in the team.

In the Bar Problem, partial observability influences how
xk(z) is computed. For truncated versions of the DU, (BTU
and TTU ), we usexk(zoτ ) which returns how many of the
observable patrons are going on nightk (note since in BTU the
first term is broadcast, the team does not need to compute it).
For utilities using an estimate of the state (BEU andEEU ),
xk(zo) is scaled, and 1

Bτ
xk(zoτ ) represents the estimate of

how many agents actually went on nightk. For example when
Bτ = 0.25, we assume thatxk(zoτ ) is really only accounting
for one quarter of the agents, so we scale it by10.25 = 4. Note
this is an extremely simple estimation procedure and does not
take any information an agent collects to modify how it forms
this estimate.

IV. RESULTS

We tested the performance of each of the four version of
the DU in Arthur’s Bar Problem. Each team utility was tested
with a combination of fourteen different team sizes and eleven
levels of observability for a total of 154 tests per utility. Each
test was conducted with 100 agents and withc equal to five.

All of the trials were conducted for 1000 episodes, and were
run 25 times. These tests measured the relative merits of the
four team utilities as well as possible benefits of changing
team sizes. The results show that in some partially observable
domains, changing the utility can increase the performance of
the system, but that changing the team size without changing
the utility may be the best way to increase performance.

A. Domain without Information Sharing Costs

Figure 2 shows the tradeoffs between choices of team size
at different levels of agent observability in a domain where
there is no costs associated with agents sharing observations
with other team members. The observational capabilities of
the team at each point can be inferred from equation 8.
These results show that theBEU andTTU team utilities are
usually worse thanBTU or EEU . In addition teams using
EEU almost always perform better than teams usingBTU .
However, Figure 3 shows thatEEU has difficulties with small
team sizes and low levels of observability. When an agent
in a team can observe only 10% of agents in other teams,
BTU is the best utility when each team only has one agent.
Team utility BTU is superior in this low observability case,
since it uses the broadcast of the global utility to overcome
the lack of observations. In this case, a system designer using
EEU may consider usingBTU instead. However, expanding
the team size while continuing to use theEEU is an even
better option. Even when each team only has two agents,
the combined observational capability of these agents enables
the teams to do far better when they use theBTU . When
teams of three are formed, the system usingEEU performs
50% better than the system using the next best utility,BTU .
The systems using small teams with theEEU even performs
30% better than a single team system (team size = 100) with
full observability. This happens because agents have difficulty
maximizing a team utility for a single team system, since
the utility is influenced by the actions of all of the agents
in the entire system. In general when teams are too large,
the performance of the system goes down, even whenEEU
is used. The best team size is typically around five or ten
agents. This optimum represents the best balance between
having small teams with more learnable team utilities and large
teams, which collect more observations.

With the non-factored utilities,EEU andTTU , this balance
of team size comes from the tradeoff between factoredness
and learnability. Even though as team sizes get smaller, they
become more learnable, they also become less factored since
as information sharing goes down causing the first term in
the difference equation to diverge fromG. For the factored
utilities BEU and BTU , there is a tradeoff between two
different ways noise comes into the system. When teams are
large, more components are removed from the second term
of the difference equation allowing more noise from the first
term to remain. When teams are small, the lack of information
sharing has a similar effect, in that many of the components
in the second term are not included because their values are
unknown.
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B. Domains with Information Sharing Costs

The global utility used for previous experiments does not
include any possible communication cost associated with team
members sharing their observations with the rest of the team.
This global utility models situations for tightly bound teams,
where it is easy to share information in addition to domains
where an existing team-sharing infrastructure already exists.
Since there are no team-sharing costs, it is assumed that team
members always share their observations with the rest of the
team. However, in some domains there may be a significant
cost to share observations with other team members. This
section will explore whether it is beneficial in such a domain
for the agents to be able to choose whether or not to share
their observations with the rest of the team.

Assuming that teams are using theEEU as their team
utility, we can incorporate sharing costs by subtracting it
off the utility. The EEU including sharing costs,EEUC , is

defined as:

EEU c
τ (z) = EEUτ (z)−m(z)C , (10)

whereC is the cost for one team member to share its obser-
vations andm(z) returns the number of team members that
choose to share. In addition to incorporating the sharing costs
into the utility, a binary action is added to each agent’s actions
space: the choice of whether or not to share observations with
the rest of the team. Note that this addition doubles the number
of possible action choices an agent can make and could make it
significantly harder for agents to learn. In addition, this choice
of action could make the team utility more variable since it
changes continuously as team members decide whether or not
to share.

To test the effectiveness of allowing agents to choose
whether or not to share information, we performed experi-
ments where the cost of information sharing wasC = mĜ

100n
where there arem agents in each group out of a total of
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n agents, andĜ is the maximum possible value ofG.2

Figure 4 shows that agents that could choose whether to
share information performed worse than agents that always
shared information. Agents usingEEU c that always shared
information performed the best, since there was much less
noise in this scenario. When agents could choose to share,
the utility was less stable since it could change dramatically
depending on whether other agents in the team chose to share
at a particular time step. Note that adding sharing cost did
not significantly change the dynamics of the system. Team
with five members still performed the best. However, the
performance drop-off with large teams was even greater since
here large teams have more sharing costs in addition to having
less learnable team utilities.

V. D ISCUSSION

In this work we focus on the problem of designing a
collective of teams of autonomous agents in the presence
of partial observability. In such cases, team utilities which
rely on teams fully observing other teams may break down.
We presented four different utility functions that each make
different tradeoffs among what information is available to a
team and how that information should be used.

We saw that there are tradeoffs involved in choosing team
sizes. Large teams can benefit from increased observation
capability. However the team utilities of small teams are easier
to learn. We showed that team sizes can be adjusted to make
the optimal balance between these tradeoffs.

Furthermore, in many problems agents can choose whether
to share information or not, and consequently incur a cost or
not. Preliminary results show that in such cases, agents have a
difficult time in learning to maximize the team utility function.
This difficulty is due to the constant change in the value of the
team utility, which depends on the sharing choices of many

2The maximum average utility per agent iŝG/n. With a 1% sharing cost
per each agent, the cost iŝG/100n. When sharing withm group members
the cost ismĜ/100n.

other agents. This constant change in effect creates a more
noisy learning environment.
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